Institute of Neuroscience Faculty

Professor, Department of Biology
B.A., 1981, Yale
Ph.D., 1989, University of California, San Diego
Research Interests
Neuronal basis of behavior
We study how the nervous system controls behavior by analyzing the neural networks that control chemotaxis and thermotaxis, simple forms of spatial orientation behavior, in the nematode worm Caenorhabditis elegans. We investigate how these networks function using a combination of experimental and theoretical approaches. We track the movements of normal and mutant worms at high spatial and temporal resolution to determine the behavioral strategies underlying spatial orientation in C. elegans. Individual neurons in the networks are killed with a laser microbeam to identify their role in behavior. Patch-clamp recordings are made from normal and mutant animals to determine how the electrical properties of neurons influence network function. We also make optical recordings in freely moving animals to correlate neuronal activity patterns and behavior; these experiments are facilitated by microfluidic devices to control the worm's local environment. Data generated by the experimental approaches are synthesized in theoretical models of the spatial orientation networks. Predictions from the models are tested experimentally and the results are used to improve our theoretical understanding of the function of biological networks. These results provide new insights into the cellular and molecular mechanisms of information processing underlying animal behavior.
Movies
Concentration clamp movie
Simultaneous recording of neuronal activity and behavior
Representative Publications
-
Izquierdo EJ, Lockery SR. Evolution and analysis of minimal neural circuits for klinotaxis in Caenorhabditis elegans. J Neurosci. 2010 Sep 29;30(39):12908-17. PubMed PMID: 20881110.
Thiele TR, Faumont S, Lockery SR. The neural network for chemotaxis to tastants in Caenorhabditis elegans is specialized for temporal differentiation. J Neurosci. 2009 Sep 23;29(38):11904-11. PubMed PMID: 19776276.
Ortiz CO, Faumont S, Takayama J, Ahmed HK, Goldsmith AD, Pocock R, McCormick KE, Kunimoto H, Iino Y, Lockery S, Hobert O. Lateralized gustatory behavior of C. elegans is controlled by specific receptor-type guanylyl cyclases. Curr Biol. 2009 Jun 23;19(12):996-1004. Epub 2009 Jun 11. PubMed PMID: 19523832; PubMed Central PMCID: PMC2730525.
Lockery SR. Neuroscience: A social hub for worms. Nature. 2009 Apr 30;458(7242):1124-5. PubMed PMID: 19407792.
Lockery SR, Goodman MB. The quest for action potentials in C. elegans neurons hits a plateau. Nat Neurosci. 2009 Apr;12(4):377-8. PubMed PMID: 19322241.
Suzuki H, Thiele TR, Faumont S, Ezcurra M, Lockery SR, Schafer WR. Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature. 2008 Jul 3;454(7200):114-7. PubMed PMID: 18596810.
Lockery SR, Lawton KJ, Doll JC, Faumont S, Coulthard SM, Thiele TR, Chronis N, McCormick KE, Goodman MB, Pruitt BL. Artificial dirt: microfluidic substrates for nematode neurobiology and behavior. J Neurophysiol. 2008 Jun;99(6):3136-43. Epub 2008 Mar 12. PubMed PMID: 18337372; PubMed Central PMCID: PMC2693186.
Lockery S. Channeling the worm: microfluidic devices for nematode neurobiology. Nat Methods. 2007 Sep;4(9):691-2. PubMed PMID: 17762874.
Dunn NA, Conery JS, Lockery SR. Circuit motifs for spatial orientation behaviors identified by neural network optimization. J Neurophysiol. 2007 Aug;98(2):888-97. Epub 2007 May 23. PubMed PMID: 17522174.
Faumont S, Boulin T, Hobert O, Lockery SR. Developmental regulation of whole cell capacitance and membrane current in identified interneurons in C. elegans. J Neurophysiol. 2006 Jun;95(6):3665-73. Epub 2006 Mar 22. PubMed PMID: 16554520.
Pierce-Shimomura JT, Dores M, Lockery SR. Analysis of the effects of turning bias on chemotaxis in C. elegans. J Exp Biol. 2005 Dec;208(Pt 24):4727-33. PubMed PMID: 16326954.
Faumont S, Lockery SR. The awake behaving worm: simultaneous imaging of neuronal activity and behavior in intact animals at millimeter scale. J Neurophysiol. 2006 Mar;95(3):1976-81. Epub 2005 Nov 30. PubMed PMID: 16319197.
Miller AC, Thiele TR, Faumont S, Moravec ML, Lockery SR. Step-response analysis of chemotaxis in Caenorhabditis elegans. J Neurosci. 2005 Mar 30;25(13):3369-78. PubMed PMID: 15800192.
Chang S, Johnston RJ Jr, Frøkjaer-Jensen C, Lockery S, Hobert O. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature. 2004 Aug 12;430(7001):785-9. PubMed PMID: 15306811.
Dunn NA, Lockery SR, Pierce-Shimomura JT, Conery JS. A neural network model of chemotaxis predicts functions of synaptic connections in the nematode Caenorhabditis elegans. J Comput Neurosci. 2004 Sep-Oct;17(2):137-47. PubMed PMID: 15306736.
Pierce-Shimomura JT, Faumont S, Gaston MR, Pearson BJ, Lockery SR. The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans. Nature. 2001 Apr 5;410(6829):694-8. Erratum in: Nature 2001 Aug 2;412(6846):566. PubMed PMID: 11287956.
Pierce-Shimomura JT, Morse TM, Lockery SR. The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. J Neurosci. 1999 Nov 1;19(21):9557-69. PubMed PMID: 10531458.
Goodman MB, Hall DH, Avery L, Lockery SR. Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron. 1998 Apr;20(4):763-72. PubMed PMID: 9581767.