Judith Eisen

Professor, Department of Biology
Member, ION

Ph.D. Brandeis University
B.S. Utah State

Office:
315 Huestis
541-346-4524

 

Research Interests: Specification and patterning of neurons and neural crest cells in embryonic zebrafish

Overview: The vertebrate nervous system is composed of a large number of neurons with diverse characteristics. My lab is interested in how neuronal diversity is generated during development: how are the correct number of cells specified for specific neuronal fates at particular times and in particular locations? Most of our attention has been focused on a small, early-developing set of individually identified spinal motoneurons and on the neural crest, a transient embryonic cell population that generates a diverse set of derivatives, including the neurons and glia of the peripheral nervous system. We use a combined cellular, molecular and genetic approach to learn the mechanisms underlying cell fate specification. For example, we study the timing of critical events during development of motoneurons and neural crest cells by labeling individual cells and following their development in living embryos and by transplanting individual cells to new locations. We are isolating genes encoding molecules that may regulate motoneuron and neural crest development and testing the roles of the proteins encoded by these genes during motoneuron and neural crest specification and differentiation. We are also isolating mutations that alter motoneuron or neural crest cell fate with the goal of identifying new genes involved in the development of these cells.

RECENT PUBLICATIONS

Related Articles

Guidelines for morpholino use in zebrafish.

PLoS Genet. 2017 Oct;13(10):e1007000

Authors: Stainier DYR, Raz E, Lawson ND, Ekker SC, Burdine RD, Eisen JS, Ingham PW, Schulte-Merker S, Yelon D, Weinstein BM, Mullins MC, Wilson SW, Ramakrishnan L, Amacher SL, Neuhauss SCF, Meng A, Mochizuki N, Panula P, Moens CB

PMID: 29049395 [PubMed - in process]

Related Articles

Correction: A MultiSite Gateway Toolkit for Rapid Cloning of Vertebrate Expression Constructs with Diverse Research Applications.

PLoS One. 2017;12(4):e0176543

Authors: Fowler DK, Stewart S, Seredick S, Eisen JS, Stankunas K, Washbourne P

Abstract
[This corrects the article DOI: 10.1371/journal.pone.0159277.].

PMID: 28426753 [PubMed - in process]